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Abstract. The last few years have seen an increase in the use of sequential online mecha-
nisms, instead of the traditional direct counterparts, in college admissions in many countries,
including Germany, Brazil, and China. We describe these mechanisms and identify their
shortcomings in terms of incentives and outcome properties. We introduce a new family of
mechanisms for one-sided matching markets, which improve upon these shortcomings. Un-
like most mechanisms in the literature, which ask students for a full preference ranking over
all colleges, our mechanisms instead ask students to sequentially make choices or submit
partial rankings from sets of colleges. These are used to produce a tentative allocation at
each step. If at some point it is determined that a student can no longer be accepted into a
college, then she is asked to make another choice among those schools that would tentatively
accept her. Participants following the simple strategy of choosing the most preferred college
in each step is a robust equilibrium that yields the Student-Optimal Stable Matching.
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1. Introduction

The field of market design has developed rapidly in recent years, both in terms of the

range of objectives that are studied—different notions of efficiency, stability, fairness, etc.—

and also in the number of applications and their evaluations, in both the field and the lab.

In the typical framework, the attainability of a given objective is evaluated in terms of

mechanisms that require the relevant agents submit preferences over sets of outcomes before

a clearinghouse combines them using some predetermined criteria to produce an allocation.

This induces a game in which the action space of the participants consists of rankings over

their outcomes. By studying the incentive properties of these games, one can then see how

equilibrium outcomes relate to the objectives of the market designer. These mechanisms,

therefore, have two common properties: they are direct (in the sense that the participants

are asked for their relevant types, in this case their preferences) and induce a simultaneous

move game: all agents simultaneously interact only once.

There are many theoretical and practical reasons for focusing on direct mechanisms. First,

the revelation principle guarantees that nothing is lost by using direct mechanisms instead

of alternative action spaces. Second, in the induced games, the participants have a simple

strategy space, whereas strategies in sequential games may consist of large sets of contingency

plans over information structures. Finally, if the mechanism is strategy-proof, it is very simple

for a participant, with truth-telling being the expected behavior.

In this paper, we consider centralized college admissions, where the designer is interested

in implementing stable outcomes. The Gale-Shapley student-proposing deferred acceptance

procedure (DA) is often deemed the ideal theoretical solution for this problem due to its in-

centive and fairness properties [Balinski and Sönmez, 1999]. However, despite the availability

of DA, the last few years have seen the emergence of “iterative” (or sequential) mechanisms

for matching students to schools and colleges, sometimes on a very large scale. Prominent

examples include the college admission mechanism for the Chinese province of Inner Mongo-

lia [Chen and Pereyra, 2016, Gong and Liang, 2016], used for matching more than 200,000
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students to universities per year, the mechanism used in Brazil to determine matching for

more than two million prospective public university students per year, and the mechanism

currently being used in German university admissions [Grenet et al., 2019].1 In these itera-

tive mechanisms, the designer and the participants potentially interact multiple times, and

between these interactions, some information about intermediate outcomes is communicated

to the students. In the first part of the paper, we analyze the iterative mechanisms used in

Brazil, Germany, and the province of Inner Mongolia in China. We show that these mecha-

nisms have undesirable properties, such as the inability to provide reliable information about

where students could be accepted and susceptibility to a new type of manipulation, denoted

by manipulation via cutoffs. Manipulation via cutoffs are situations in which groups of stu-

dents with high exam grades temporarily inflate the cutoff grades at some colleges and change

their options in the last step, with the objective of reducing the competition faced by specific

low-grade students. We show that, due to the specific characteristics of college admissions

in these countries, these manipulations are feasible both in Brazil and Inner Mongolia and

provide anecdotal evidence that they take place in real life in the latter case. Importantly,

these undesirable incentive properties distort the stability of the final outcome.

An obvious solution to all these problems would be a switch to DA. However, designers

might be opposed to a sharp change in the system or value the multiple interactions with

students and the possibility of intermediate communication. Finally, the designer might

prefer the iterative feature of the current mechanism. In this paper, we try to answer the

following question: Can a designer implement a stable allocation, maintaining the iterative

nature of the system with the possibility of intermediate communication with students? And

if so, what is the “cost” of the use of the resulting procedure when compared to DA?

In the second part of the paper, we propose a family of iterative mechanisms for imple-

menting stable outcomes in many-to-one matching markets. In the mechanisms we propose,

instead of requesting a full preference over all private outcomes from each participant, they

1Another example of the current use of iterative mechanisms is the school district in Wake County, NC [Dur
et al., 2018].
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are instead repeatedly asked to choose one option or to submit a (potentially partial) ranking

over the options available. These choices are used to produce tentative allocations. Some

information about these allocations may be given back to the participants before asking them

for further choices and/or rankings until a final allocation is produced. These mechanisms,

therefore, resemble a sequential and flexible implementation of DA, in which instead of asking

for preference rankings and using them in an algorithm, the agents themselves are repeatedly

asked to make choices from sets of available options. This family of mechanisms is denoted

by the Generalized Iterative Deferred Acceptance Mechanisms (GIDAM). We also consider

a prominent special case of GIDAM for exam-based college admissions, where the students

choose one university at a time: the Iterative Deferred Acceptance Mechanism (IDAM).

The GIDAM mechanisms share some properties with the standard direct implementation

of DA, but not all. While DA is strategy-proof, GIDAM mechanisms may lack even a weakly

dominant strategy. On the other hand, all students following the simple strategy of choosing

the most preferred option at each step (denoted by straightforward strategy) constitute a

robust equilibrium: at each step, regardless of the choices made before, choosing the most

preferred option—or submitting truthful partial rankings when allowed—from that point

on first-order stochastically dominates any deviating strategy, for any distribution of beliefs

(Theorem 1). This result comes from the fact that deviating strategies are indistinguishable,

from an observer’s perspective, from a “truthful” behavior for some different preferences. The

outcome produced in that equilibrium is the same as the one produced by DA: the student-

optimal stable matching (Proposition 1). Thus, the designer who has a preference for iterative

allocation procedures can reach a desirable outcome. However, instead of implementing in

dominant strategies, she can use an ordinal perfect Bayesian equilibrium implementation in

straightforward strategies.

So far, we have been agnostic about the potential benefits of iterative mechanisms and

instead took the iterative implementation as an external preference of the designer. Lately,
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however, there is growing evidence that these procedures might have benefits not captured

by the standard school choice model.

Recent experimental evidence shows that stable allocations are reached significantly more

often under iterative versions of DA than under direct DA [Klijn et al., 2019, Bó and Hakimov,

2020]. This result is driven by higher rates of truthful behavior under the iterative mechanism

than under DA.2

Another reason why iterative stable mechanisms may be desirable is that the steps in-

volved in the production of the final allocation are more transparent. In standard DA, the

rankings students submit are used in a sequential computer-operated process, which may not

be entirely understood by the participants. Making the agents themselves make choices and

see their effects, each step of the iterative mechanisms is simpler and better understood. In

France, for instance, DA was abandoned in favor of a sequential procedure in 2018, following

complaints about the lack of transparency of DA.3

Finally, by construction, the iterative mechanisms allow for the designer to reveal inter-

mediate information to the students between the steps of an iterative procedure. In the

mechanisms used in Inner Mongolia and Brazil, the emphasis of the designer is on publishing

intermediate cutoff grades that should help students update their expectations about their

chances of acceptance at a university.4

The numerous interactions between participants and the designer involved in implementing

a GIDAM would seem infeasible 15 years ago. The use of these procedures has been made

possible, in practice, by the Internet, which allows students to easily interact multiple times

2This evidence is closely related to growing experimental and empirical evidence that the strategic simplicity
of DA may not be matched by an understanding, on the part of the agents, of its incentives [Chen and
Sönmez, 2006, Pais and Pintér, 2008, Ding and Schotter, 2019, Rees-Jones, 2018, Hassidim et al., 2020, Chen
and Pereyra, 2015]. For an extended survey of the experimental literature of school choice see Hakimov and
Kübler [2020].
3Hakimov and Raghavan [2020] formalize the transparency for centralized allocations, and indeed iterative
mechanisms that accept the submission of one object at a time are more transparent than the direct mecha-
nism according to their notion.
4Grenet et al. [2019], Hakimov et al. [2020] emphasize the usefulness of this communication if students have to
acquire costly information about their preferences over universities, and this acquisition is possible between
the steps of the procedure.
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with a central clearinghouse via a website or even a mobile application. Still, in principle,

the procedure might take a long time before the stable allocation is reached. In the third

part of this paper, we show that the comparison between DA and IDAM presents a trade-off

between the length of submitted preferences in DA and the number of steps that IDAM

takes to produce its outcome. Section 5 evaluates this trade-off through theoretical and

simulation results. We run simulations comparing the number of steps it takes for the IDAM

mechanism to produce an outcome and the minimum length of a rank-ordered list necessary

for truth-telling to be an equilibrium in DA. These show that the relative advantage of the

IDAM is higher when the ratio of students to seats is higher. Interestingly, when the number

of students equals the number of seats, the simulations also show that IDAM produces an

outcome in fewer steps in scenarios where DA needs longer rank-ordered lists and vice versa.

Proofs absent from the main text and additional details can be found in the Appendix.

Related literature. This paper mainly relates to two lines of research in market design.

One is the family of works that evaluate, from both a positive and a normative perspec-

tive, mechanisms used in the field in college admissions and school choice. While evaluating

the college admission process in Turkey, Balinski and Sönmez [1999] showed that the Gale-

Shapley student-proposing deferred acceptance procedure (DA) [Gale and Shapley, 1962] is

characterized as the “best” fair mechanism, in that it is strategy-proof and Pareto dominates

any other fair mechanism (that is, it is constrained efficient). In fact, variations of the DA

mechanism are used in many real-life student matching programs around the world. Exam-

ples include the college and secondary school admissions in Hungary [Biró, 2011], high school

admissions in Chicago [Pathak and Sönmez, 2013] and New York City [Abdulkadiroğlu et al.,

2009], and elementary schools in Boston [Abdulkadiroglu et al., 2006]. Other mechanisms,

such as the college-proposing DA, the so-called “Boston mechanism,” and the “Parallel mech-

anism” are used to match millions of students to schools and colleges worldwide [Chen and

Kesten, 2017, Abdulkadiroğlu and Sönmez, 2003, Balinski and Sönmez, 1999]. Gong and

Liang [2016] apply the mechanism currently in use to match students to universities in Inner
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Mongolia. Grenet et al. [2019] analyze the system used for college admissions in Germany,

which combines a sequential phase and a direct revelation phase. In subsection 5.2, we show

that one instance of the GIDAM mechanism also presents this combination and has good

practical properties.

This paper is also related to the study of sequential mechanisms. Kagel et al. [1987] show

that, although the second-price auction is isomorphic to an English auction, experiments

show that behavior is significantly different when comparing both, with truthful behavior

more prevalent in the latter. Ausubel [2004] and Ausubel [2006] propose sequential auction

mechanisms for multiple (homogeneous and heterogeneous, respectively) objects. While there

are direct mechanisms that implement the same outcomes in dominant strategies, the author

argues that the proposed sequential mechanisms are simpler and preserve the participants’

privacy.

In a recent paper, Li [2017] provides a theoretical justification for why some sequential

mechanisms perform better than their direct counterparts. That justification is based on

a refinement of strategy-proofness, denoted obvious strategy-proofness (OSP), in which the

realization that a certain strategy is dominant does not rely on contingent reasoning. The

author shows that a family of mechanisms, which includes the English auction, is OSP,

therefore providing a a theoretical explanation for the results in Kagel et al. [1987].5 When it

comes to stable mechanisms, however, Ashlagi and Gonczarowski [2018] show that no OSP

mechanism yields stable matchings.6

Experimentally comparing the behavior under DA and the IDAM mechanism in the school

choice setup, Bó and Hakimov [2020] show that the truthful equilibrium in IDAM, which

produces the student-optimal stable matching, predicts behavior better than the dominant
5Baccara et al. [2012] evaluate the use of an obviously strategy-proof mechanism — Sequential serial dic-
tatorship — in the assignment of offices for the faculty in a new building, and analyze the effect of faculty
network on the choices in the mechanism. The coordination of choices would be harder to execute using a
direct mechanism. Thus, one potential benefit of using iterative mechanisms might come from the possibility
of accommodating non-standard preferences.
6The authors show, however, that there is an OSP stable mechanism when the preferences on one side of the
market satisfy an acyclicity condition. This is a very restrictive condition, which is not satisfied, for example,
by the college admission process in Brazil.
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strategy in DA, also leading to a larger proportion of stable outcomes. Klijn et al. [2019]

also present evidence in that direction. Echenique et al. [2016] analyze the behavior under

an iterative DA mechanism in the two-sided matching setup and show that most realized

stable outcomes were receiver-optimal. Similarly, Kagel and Levin [2009] show experimental

evidence that subjects more often behave in line with the equilibrium prediction in the

sequential mechanisms in Ausubel [2004] than with the dominant strategy direct counterpart.

These results indicate that the behavior more consistent with the equilibrium prediction in

these sequential implementations is not entirely captured by the refinement proposed in Li

[2017].

Other papers have evaluated non-direct iterative mechanisms for matching students to

colleges or schools. Dur et al. [2018] use the fact that the school choice mechanism used

in the Wake County Public School System allows for students to interact multiple times

with the procedure as a method for empirically identifying strategic players. Interestingly,

the dynamic nature of the procedure, and the information made available to the participants

during the process, makes it somewhat comparable to the IDAM mechanism. Dur and Kesten

[2019] and Haeringer and Iehlé [2019] evaluate the sequential use of direct mechanisms for

a single allocation problem. In Dur and Kesten [2019], assignments made at each step are

final, and in Haeringer and Iehlé [2019] students might reject their matchings and submit a

potentially updated preference in the following round.

A rich series of papers also consider sequential mechanisms that implement stable match-

ings in equilibrium, including Alcalde and Romero-Medina [2000], Alcalde and Romero-

Medina [2005], Romero-Medina and Triossi [2014], and Klaus and Klijn [2017]. While many

of these mechanisms implement stable allocations in equilibrium, the determination of equi-

librium strategies depends on coordination between students in a way that is significantly

more demanding than the equilibrium strategy that IDAM has, which depends solely on

(partial) information about the student’s own preferences over colleges.
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2. Iterative mechanisms in the field

In this section, we provide a brief description of three iterative mechanisms that are cur-

rently in use for college admissions. These are: (i) the mechanism used for a large portion

of the public universities in Brazil, which we will denote as the Brazilian Mechanism, (ii)

the mechanism used for some public universities in Germany, denoted as the German Mech-

anism, and (iii) the mechanism used for universities for residents of the Chinese province of

Inner Mongolia, denoted as the Inner Mongolia Mechanism.

Even though these procedures have many differences, for the most part, they share the

same basic setup, which we will use for their descriptions.

There is a set of students S “ ts1, . . . , snu, and of colleges C “ tc1, . . . , cmu with fixed

capacities (a maximum number of students who can be matched to them) pqc1 , . . . , qcmq.

Colleges rank all students based on some score (which in Brazil and Inner Mongolia come

from a national exam, and in Germany from a combination of different criteria). If using a

national exam, different colleges7 may use different weights for the various parts of the exam.

For example, economics programs could give a higher weight to the exam’s math section,

while medical programs could give a higher weight to the biology section. Denote by zc psq

student s’s resulting exam grade in college c. Colleges may also have a minimum acceptance

grade, representing the minimum value of zc psq a student s must have to be acceptable at c,

denoted by zc.

Given a set of students applying to a certain college, one commonly used information is

the cutoff grade for that college. A cutoff grade represents the lowest grade necessary to be

accepted at a college, given the set of students applying to it. When looking at all colleges’

cutoff values, a student can thus infer which ones would accept her if all other students’

choices remain constant. Before the centralized iterative mechanisms were introduced in

Brazil and China, it was common for students to see the historical values of the cutoffs for

7In the countries considered, as in many others, students apply directly to specific programs in the colleges
or universities. For simplicity, though, we refer only to “colleges” whenever the distinction is not necessary.
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the different colleges as an indication of where they should apply, given their information

about their own exam grades or ability. One of the advantages of the new procedures would

be to allow the students to make that assessment in “real-time” instead of only based on

historical data.

2.1. The German Mechanism. The procedure that we denote by German Mechanism is

originally called DoSV, Dialogorientiertes Serviceverfahren. Our description of the procedure

and its characteristics is drawn from Grenet et al. [2019]. The German Mechanism is used for

admissions to some competitive university programs across the country and was introduced

in 2012. In the winter term of 2015/16, more than 180,000 students applied to 465 programs

in 89 universities.

The German Mechanism operates in three stages:8

‚ Stage 1: During this period, students submit a ranked ordered list with at most 12

colleges to the central clearinghouse.

‚ Stage 2 (32 days):

– During this period, each college c submits the students’ scores zc. When the

scores from a college c are received, the clearinghouse automatically sends emails

with offers to the qc highest-scoring students with respect to zc, who had c among

the colleges in their list submitted during Stage 1.

– A student with one or more offers can choose to accept one of them and leave

the procedure, or can choose to hold some or all of these offers.

– When some student rejects an offer made by some college c, the clearinghouse

sends another offer to the student with the highest score in zc, who had c among

the colleges in their list submitted during Stage 1 but had not yet received an

offer from c.

8While the description we provide omits some details of the procedure, it provides the key elements necessary
for our analysis and for identifying shortcomings that are also present in the actual procedure. A detailed
description of the other details can be found in Grenet et al. [2019].
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‚ Stage 3: The seats that were not taken by the students who left in Stage 2—including

the offers that were held but not accepted— and the students who did not leave during

Stage 2 are matched using the Gale-Shapley college-proposing deferred acceptance

mechanism [Gale and Shapley, 1962], using the ranked ordered list submitted by

students in Stage 1 as their preferences and the scores submitted by the colleges in

Stage 2 to rank the students. Students who rejected an offer from a college in Stage

2 are removed from that college’s ranking, however.

Therefore, the German Mechanism matches students to colleges first through a dynamic

offers procedure (Stage 2) and then uses a standard (constrained list) college-proposing de-

ferred acceptance for the remaining seats. Notice that offers from colleges that are held but

not accepted by the end of Stage 2 are treated as rejected offers before going to Stage 3.

2.2. The Brazilian Mechanism. In the period between 2010 and 2016, the precise rules

which define the Brazilian Mechanism were changed multiple times. The version that we

describe, due to its simplicity, is the one used in the year 2010. Although later versions have

different modifications, to the best of our knowledge, all the problems we identify are also

present in the later versions to the best of our knowledge.

The mechanism runs for four days.

‚ During each day t “ t1, 2, 3, 4u, students may each choose a college to apply to. If a

student makes no choice, her last choice is used again, if any. At the end of each of

the first three days, the following is executed for each college c:

– If the number of students who chose c and have an exam grade at that college

higher than zc is smaller than qc, the cutoff grade ζtc is set to zc.

– Otherwise, the cutoff grade ζtc is set to be the qthc highest grade at that college

among those who chose it on that day.

‚ The values of ζtc1 , . . . , ζ
t
cm are made public.

‚ At the end of the fourth day, a student-college matching is produced, as follows:
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– For each college c, the top qc students who have an exam grade higher than zc

and chose c on the last day are matched to it.

– All students who were not among the ones above remain unmatched.

– Final cutoffs, calculated in the same way, are made public.

2.3. The Inner Mongolia Mechanism. The Inner Mongolia Mechanism is used to match

residents of the province of Inner Mongolia in China to seats reserved for those students

in universities across the country. Our description of the procedure is drawn from Gong

and Liang [2016]. In the Inner Mongolia mechanism, all colleges use the same grades in a

national exam, that is, for all c, c1, zc “ zc1 “ z. The students are partitioned into k tiers

S “ S1 Y S2 Y ¨ ¨ ¨ Y Sk, where the grades of all those in S1 are greater than those in S2, and

so on. That is, if s P Si, s1 P Sj, i ă j implies that zpsq ą zps1q. The number of tiers and the

number of students in each tier varies from year to year, but the former ranges from eight to

11.

When the procedure starts, as in the Brazilian Mechanism, students can choose to apply to

one of the colleges available. While students make these choices, each college’s cutoff grades

are calculated and made public in real-time. As in the Brazilian Mechanism, cutoff grades

represent the lowest grade in z necessary to be accepted into each college, given the choices

that all students made. Students can revise their choice as many times as they want, and

the cutoff values are updated continuously accordingly.

After a pre-determined T number of minutes,9 the matchings of the students in S1 are

finalized. If by the end of this time a student chose a certain college and the cutoff grade at

that college is lower than her exam score, then the student is accepted into the college she

chose. If, on the other hand, her last choice after T minutes is a college with a cutoff grade

above her score, she will be left unmatched.10

9To the best of our knowledge, the value of T is either 60 or 180 minutes.
10Students who are left unmatched during the Inner Mongolia Mechanism participate in a scramble procedure,
which allocates leftover seats. We do not model this phase.
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After the matchings for students in S1 terminate, the remaining students again have T

minutes to make choices, observe cutoffs, and revise their choices, involving the seats not

taken by the students in S1. As for the previous tier of students, after T minutes, the

matches of the students in S2 are finalized. Some will be matched to the last college they

chose, and some will be left unmatched. This procedure keeps on going until all k tiers of

students are finalized.

3. Shortcomings of the current mechanisms

In this section, we present some shortcomings that we identified in the mechanisms de-

scribed in the previous section. Since the Brazilian and the Inner Mongolia mechanisms

share more similarities with themselves than with the German Mechanism, the nature of the

shortcomings also shares that relation.

To explain the results, we need to make an assumption and provide a few definitions. The

assumption is that students have strict preferences over the set of colleges and remaining

unmatched. That is, they are not indifferent between any two colleges and may prefer to

be left unmatched than to be matched to some colleges. Next, we say that a student s

justifiably envies a student s1 if s is matched to college c, s1 is matched to c1, s prefers c1

to c, and zc1psq ą zc1ps
1q. Finally, a matching is wasteful if there is a college c which is left

with an empty seat and a student who would rather be matched to c than the match she is

left with.11

We start with the German Mechanism. One problem of the German Mechanism is that

accepting offers in Stage 2 may hurt students.

Remark 1. In the German Mechanism, if a student accepts an offer during Stage 2, she

may justifiably envy another student at the final allocation, or the final allocation may be

wasteful.

11Also, if that college has a minimum grade, that student has a grade above it.
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The reason for that is clear. If a student s accepts an offer during Stage 2, it is possible

that another offer from a more-preferred college c˚ could arrive later in that stage or during

the algorithmic offers process that takes place in Stage 3. In this case, c˚ would go down

their ranking of students and either make an offer to another student s1, in which case

s would justifiably envy s1, or c˚ could end up leaving an empty seat, in which case the

matching would be wasteful. This is not a purely theoretical possibility. In fact, Grenet

et al. [2019] show empirically that the simple fact that an offer is sent to a student during

Stage 2 significantly increases the likelihood that it will be accepted, despite these not being

made by more desirable universities.12

The second problem that we identify with the German Mechanism comes from the fact that

it consists of a sequentialized version of the college-proposing deferred acceptance mechanism

[Gale and Shapley, 1962], and as a result has some of the incentive shortcomings of the

standard implementation of that mechanism [Roth, 1982], as shown below.

Remark 2. In the German Mechanism, students may obtain better outcomes by strategically

rejecting offers during Stage 2, and/or submitting ranked ordered lists that do not represent

their true preferences.

One problem with the shortcoming above is that, by improving the outcomes of students

who “strategically manipulate” their choices and reports, the German Mechanism may in-

duce an advantage to students who engage in these manipulations and/or have access to

information that could assist these manipulations.

Next, let us consider the Brazilian and Inner Mongolia mechanisms. A common charac-

teristic between both mechanisms is that the choices made by the students before these are

used to produce the allocation (i.e., those made during the first three days in the Brazilian

Mechanism, and those made between the finalization of the matches of each tier) have no

12The authors of that paper interpret these acceptances as resulting from an endogenous formation of pref-
erences with regret avoidance.
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direct effect on the outcomes. That is, as long as the final choices, used when the matchings

are produced, remain the same, the outcome will also not be changed.

Since cutoffs are calculated and made public during these “practice runs” that are present

in both mechanisms, they could inform students about whether an application to a certain

college is likely or not to be accepted in the end. If they do, then even though they do

not have a direct effect on the final outcomes, they could provide information that guides

students to better outcomes. However, the problem is that since students are not restricted

by which college they can apply to and when, these cutoff values can freely fluctuate up and

down, without necessarily providing any reliable information about which colleges would or

would not accept a student at the end of the process.

Remark 3. During the “practice runs” of the Brazilian and Inner Mongolia mechanisms, each

college’s cutoff values may go up or down from one day to the next.

Since the cutoff values may fluctuate, for a given college, a student who has a grade higher

than the cutoff cannot be sure that she will be accepted into that college if she chooses it,

and a student who has a grade lower than that cutoff cannot be sure that she would not be

accepted.13

In the next subsection, we discuss another shortcoming of the Brazilian and Inner Mongolia

mechanisms, which is new to the literature, and has some indications that it may be affecting

real-life outcomes.

3.1. Manipulations via cutoffs. A manipulation via cutoffs occurs when a group of stu-

dents artificially increase the cutoff values of some college as a way to prevent other students’

applications and then, shortly before matchings are finalized, vacate those seats so that stu-

dents with a lower exam grade, aware of that manipulation, take their places. We define

manipulability via cutoffs below.

13A previous working version of this paper showed, using data from 2016, that cutoff values for many programs
did fluctuate substantially, both up and down, from one day to the next.
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Definition 1. A mechanism is subject to manipulations via cutoffs if there exists a

strategy profile that results in the temporary increase of the cutoff grade of a college.

Notice that the increase must be temporary, implying that at some point it is reversed. In

what follows, we will say that a student presents straightforward behavior if she always chooses

her most preferred college among those which have cutoff values below her grade. Since under

the Brazilian and Inner Mongolia mechanisms students are not constrained to which colleges

they can apply to and when they can change their applications, these mechanisms are subject

to these strategic manipulations.

Remark 4. The Brazilian and Inner Mongolia mechanisms are subject to manipulations via

cutoffs.

The example below shows how manipulations via cutoffs can happen in the case of the

Brazilian Mechanism.

Example 1 (Manipulation via cutoffs). Consider the set of students S “ ts1, s2, s3, s4u and

of colleges C “ tc1, c2, c3u, each with capacity qi “ 1 and no minimum scores. Students’

preferences are as follows:

Ps1 : c1 c2 c3

Ps2 : c1 c2 c3

Ps3 : c1 c2 c3

Ps4 : c2 c1 c3

Students’ exam grades at the colleges are as follows:
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c1 c2 c3

s1 100 100 100

s2 200 200 200

s3 300 300 300

s4 400 400 400

Suppose that the Brazilian Mechanism is used, and that students present straightforward

behaviors. At the end of each day, the cutoff values would then be as follows (the cutoffs at

t “ 4 represent the final allocation cutoffs):

c1 c2 c3

t “ 1 300 400 0

t “ 2, 3, 4 300 400 200

The matching produced will therefore be µ:

µ “

¨

˝

c1 c2 c3 H

s3 s4 s2 s1

˛

‚

Suppose, however, that students s1 and s4 collude and modify their behavior, acting instead

as follows:

‚ During t “ 1, 2, 3, student s1 chooses college c3 and student s4 chooses college c1.

‚ On day t “ 4, student s1 chooses college c1 and student s4 chooses college c2.

Assuming that the other students present straightforward behavior, the cutoff values at the

end of each day would be as follows:

c1 c2 c3

t “ 1 400 ´´´ 100

t “ 2 400 300 100

t “ 3 400 300 200

t “ 4 100 400 200

The matching produced will be µ1:



THE ITERATIVE DEFERRED ACCEPTANCE MECHANISM 18

µ1 “

¨

˝

c1 c2 c3 H

s1 s4 s2 s3

˛

‚

Student s1 is better off under µ1 than under µ, while s4 is matched to the same college in

both cases.

In other words, successful manipulations via cutoffs consist of a set of students SH—

SH “ ts4u in the example above— “holding” seats for some time in colleges and “releasing”

them so that a set of students ST—ST “ ts1u in the example above—can take them right

before their matchings are determined. In order for these manipulations to succeed, the

students who are not in the coalition have to respond in a straightforward way to the last

cutoff values they see. This can be considered a reasonably mild requirement. It does not

require that the other students constantly follow straightforward behavior, but only that they

do not choose, in the last period in which they can make a choice, a college where the cutoff

value is above their grade in that college.

Other than that, the SH coalition must be able to significantly increase the value of the

cutoff when they apply to a college. This may not be easy. After all, colleges typically accept

hundreds or thousands of students every year, and a coalition of hundreds of high-achieving

students performing these potentially risky manipulations does not seem realistic. In many

countries (including Brazil and China), however, students apply directly to specific programs

at the universities, so even though the universities as a whole accept hundreds or thousands

of students, the number of seats at each program is often below 100, and many times lower

than 30 or 20. Moreover, even those seats are often subdivided. In China, the seats in each

program are partitioned between seats reserved for candidates from specific provinces. In

Brazil, federal universities partition the seats in the programs into five sets of seats, reserved

for different combinations of ethnic and income characteristics [Aygün and Bó, 2013]. Finally,

universities sometimes offer only a subset of the total number of seats in a program through

the centralized matching process. In fact, the median number of seats offered in each option
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available during the January 2016 selection process in Brazil, where more than 228,000 seats

in public universities were offered, was five.14

There is evidence that this type of manipulation takes place in real life. In Inner Mongolia,

there is evidence that students engage in manipulations via cutoffs, as documented by China

News:15

“(...) in fact, since 2008, the clearinghouse found that some high scoring

students applied to a college with lower cutoff score. For example, their score

allows them to go to PKU or Tshinghua, but they chose Beijing Polytech first.

On the other hand, some other students, from the same high school often,

applied to colleges that their score would not allow them to go initially (...)

[the] system shows that their rank is below the capacity—so they can’t be

admitted under usual terms—however they do not revise their choices.”

Even more remarkably, there are indications that high schools are coordinating students’

actions:

“(...) the clearinghouse noticed that, 2 or 3 min before the deadline, the

ranking of students in the system is changing—this is the evidence that high

schools are organizing their own high scoring students to occupy seats for low

scoring students.”

Regarding the Brazilian Mechanism, while we could not find any article in the media

describing manipulations via cutoff, there is at least one video on YouTube describing how

to perform the manipulation.16

The Brazilian mechanism’s shortcomings are closely related to the motivation behind the

introduction of activity rules in the combinatorial clock auction [Ausubel et al., 2006, Ausubel

14Each program was partitioned into five options: one for each combination of characteristics related to
affirmative action. Each one was treated like a college in our framework. In other words, the median number
of seats in each one of these partitions was five.
15Source (in Chinese): http://www.chinanews.com/edu/2014/09-04/6562740.shtml. (Accessed on December
9, 2017).
16Source: https://www.youtube.com/watch?v=WTDxkW0cIGQ.
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and Baranov, 2014]. In these auctions, participants’ bids might be inconsistent over time, and

agents might have the incentive to use “sniping behavior,” in which bidders conceal their true

intentions until the very end of the auction. This behavior is somewhat related to manipula-

tion via cutoffs, where coalitions of students also “conceal” their true preferences until the last

period. The solution proposed by the authors is to use “activity rules,” which are rules that

restrict participants’ bids to guarantee that they satisfy consistency properties, such as some

Revealed Preference axiom. In the next section, we will introduce the Generalized Iterative

Deferred Acceptance Mechanisms, a family of iterative mechanisms for matching problems

that include the ones dealt with by the mechanisms we evaluated. As we will show below,

they improve upon the shortcomings that we identified above. For one thing, they differ from

the Brazilian and Inner Mongolia mechanisms in that they restrict the participants’ behavior

in a way that is analogous to the activity rules used in these combinatorial auctions.

4. The Generalized Iterative Deferred Acceptance Mechanisms

In this section, we introduce the generalized version of our proposed mechanisms, denoted

as the Generalized Iterative Deferred Acceptance Mechanisms (GIDAM). In this generalized

version, we consider a general setup, in which the admission criteria used by colleges may

be more general than one simply based on exam grades, allowing, for example, for the use

of affirmative action policies or variations in financial aid.17 This version also allows for

the same students and colleges to be matched under different contractual terms, as in the

matching with contracts model introduced by Hatfield and Milgrom [2005]. Finally, we also

allow for cases where students might submit not only one choice at a time but also rankings

over the available options.

A special case of GIDAM, which considers the same setup of college admissions based on

national exam grades, is introduced in subsection 4.1.

A matching with contracts market is a tuple xS,C, T,X, PS, FCy:

17See, for example, Hafalir et al. [2013], Aygün and Bó [2013], Shorrer and Sóvágó [2017], Hassidim et al.
[2020], and Yenmez [2018].
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(1) A finite set of students S “ ts1, . . . , snu,

(2) A finite set of colleges C “ tc1, . . . , cmu,

(3) A vector of contractual terms T “ pt1, . . . , t`q,

(4) A set of valid contracts X Ď C ˆ S ˆ T ,

(5) A list of strict student preferences PS “ pPs1 , . . . , Psnq over X Y tHsu
18, and the

respectively derived weak preferences RS,

(6) A list of college choice functions over sets of contracts FC “ pfc1 , . . . , fcmq, where

for every c P C and I Ď X, fc : 2X Ñ 2X , tpc, s, tq , pc, s1, t1qu Ď fc pIq ùñ s ‰ s1 and

pc1, s, tq P fc pIq ùñ c1 “ c.

For any I Ă X, s P S, and c P C, denote Is ” tpc, s1, tq P I : s1 “ su , Ic ” tpc1, s, tq P I : c1 “ cu,

s pIq ” ts P S : D pc, s, tq P Iu, and c pIq to be defined analogously. We abuse notation and let

c pxq and s pxq be the college and student in contract x, respectively. An outcome is a set of

contracts Y Ď X such that Y contains at most one contract per student, that is, |Ys| ď 1 for

each s P S. Denote by X the set of all outcomes. An outcome Y is individually rational if

for every student s, YsRsH and for every college c, Yc “ fc pYcq. Define by maximum rank

function a function π : Z` Ñ N Y t8u that defines, for each step t “ 0, . . . , TMax, what is

the maximal length of a ranking that a student may submit.

A GIDAM mechanism consists of the following steps:

t “ 0: A signal about the set of feasible allocations is broadcast.19 Additionally, each

student is given an individualized menu of contracts, consisting of the contracts in-

volving said student that colleges deem acceptable and the null option H.20 Each

student who is given a non-empty menu is asked to submit an ordered list with at

18In some places we abuse notation and also use Ps over sets with only one contract. Here, H represents
the null contract for student, representing a student remaining unmatched. We also assume that a student’s
preference is over contracts in which she is involved and H.
19These signals consist of deterministic functions from subsets of allocations to some messages. That is, by
observing those signals, students may make inferences about the set of feasible allocations at each step. A
detailed and formal description of the signal function and all other aspects of the GIDAM mechanism can be
found in the Appendix.
20That is, these contracts would be chosen if each one of them were the only option provided to the involved
college.
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most π p0q contracts in their menu. After all students submit their lists (or opt not

to), these are used to perform a cumulative offer process. Students who are offered a

menu with contracts but opt not to submit are left unmatched. That is, students one

at a time offer their highest-ranked contract on the list submitted to the involved col-

lege. The colleges choose among all contracts offered, cumulatively, with their choice

functions. Whenever a contract is rejected, the student involved in it offers the next

highest-ranked contract, if any. The step ends whenever every student has a contract

held by a college or has all of those on the submitted list rejected.

0 ă t ď TMax: At the beginning of the step, a signal about the set of allocations that are

still feasible is broadcast. There are two cases: (i) If πptq “ 8 and TMax ă 8, every

student is given an individualized menu of contracts, which consists of the contracts

involving said student that colleges would accept21—while having all contracts that

were offered in previous steps still available to these colleges— in addition to the null

option H. (ii) If πptq ‰ 8 or TMax “ 8, each student who does not have a contract

being held by a college is given an individualized menu of contracts, consisting of the

contracts involving said student that colleges would accept—while having all contracts

that were offered in previous steps still available to these colleges—in addition to the

null option H. Each student who is given a non-empty menu is asked to submit

an ordered list with at most π ptq contracts in their menu. As in the previous step,

the same cumulative offer process is undertaken, where the lists submitted by the

students in this and previous steps are used to offer contracts to colleges, which are

considered together with those offered in previous steps. Students who are offered a

menu with contracts but opt not to submit are left unmatched.

21We say that a college c would accept a contract x if x P fcpAY txuq, where A is the set of contracts that
were offered to c in previous steps.
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The process ends after the step t “ TMax or whenever the set of contracts held by all colleges

does not change from one step to the next. Denote that last step by T ˚.22 A formal definition

of the mechanism can be found in the Appendix.

Notice that menus always include the null option H, so whenever it helps exposition, we

will omit it from our examples. The public signals do not play a role in the results we present,

but in general they may affect other incentives induced by the mechanism and be useful in

terms of transparency by allowing the participants to follow the procedure’s intermediate

steps. In subsection 4.1, for example, the public signals will be the cutoff grades at each

college, as in the Brazilian and Inner Mongolia mechanisms.

Example 2. Consider a matching with contracts problem in which there are four colleges C “

tc1, c2, c3, c4u, each with one seat available, and four students S “ ts1, s2, s3, s4u. Colleges

may accept students with or without financial aid. Colleges have a specific criterion for

choosing contracts: contracts without financial aid are always preferred to contracts with

aid. When comparing contracts that do not differ in that dimension, students with higher

exam scores are preferred.23 Students’ grades in the national exam follow their indexes: s1

has the highest grade, s2 the second highest, etc. Let the maximum rank function be such

that π ptq “ 2 for every t ě 0 and TMax “ 8.

The table below shows, for each student, the menu of contracts offered in the first step

(which, for all students, contain all possible contracts with colleges), and a list that is sub-

mitted by each student in the first step. We represent contracts with financial aid with the

letter F and without financial aid with N . In the first list submitted by student s1, therefore,

she lists college C1 first with financial aid followed by C4, also with financial aid. Student s4

opted to submit a list containing only one option, which is, of course, also a valid list.

22Depending on the properties of the college choice functions, it is possible to have a GIDAM mechanism
with TMax “ 8 that never terminates. However, for all the results that follow, we will make assumptions of
these functions that guarantee that this will not happen.
23We do not argue that these preferences are typical or realistic. We use them because they are simple but
allow for an informative example of the steps of the GIDAM mechanism.
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The lists submitted are used in a cumulative offer process. In it, student s1 has her top

contract tentatively accepted, since no contract without financial aid is offered during that

process. Moreover, although student s3 has her contract with C2 with financial aid rejected,

her contract without financial aid is tentatively accepted, since colleges always prefer those.

As a result, s2 has both contracts in her list rejected. Student s4’s only contract is also

rejected.

Step t “ 0

Student Tentative match Menu offered List submitted

s1 H
C1

F N

C2

F N

C2

F N

C3

F N

C3

F N

C4

F N

C4

F N

C1

F

C1

F ą1

C4

F

C4

F

s2 H
C1

F N

C2

F N

C2

F N

C3

F N

C3

F N

C4

F N

C4

F N

C1

F

C1

F ą2

C2

F

C2

F

s3 H
C1

F N

C2

F N

C2

F N

C3

F N

C3

F N

C4

F N

C4

F N

C2

F

C2

F ą3

C2

N

C2

N

s4 H
C1

F N

C2

F N

C2

F N

C3

F N

C3

F N

C4

F N

C4

F N

C1

F

C1

F ą4

The table below shows the menus offered in the next step and the choices we consider

students to have made. Notice that the number of options in the menus offered to students

s2 and s4 are different. Since s4 has a low exam grade and C2 tentatively holds a student

without financial aid, contracts with C2 would no longer be accepted. Also, while the student

with the highest exam grade is tentatively matched to college c1, a contract without financial

aid is offered in the menu to student s2.
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Step t “ 1

Student Tentative match Menu offered List submitted

s1
C1

F

C1

F
None None

s2 H
C1

N

C1

N

C2

N

C2

N

C3

F N

C3

F N

C4

F N

C4

F N

C1

N

C1

N
ą2

C4

F

C4

F

s3
C2

N

C2

N None None

s4 H
C1

N

C1

N

C3

F N

C3

F N

C4

F N

C4

F N

C1

N

C1

N
ą4

C4

F

C4

F

In step t “ 2, only student s4 will be given a menu, with only three contracts. This

happens even though s1 had her previous match to C1 rejected. The mechanism continued

down her submitted list in step t “ 0 and matched her to C4 with financial aid:

Step t “ 2

Student Tentative match Menu offered List submitted

s1
C4

F

C4

F
None None

s2
C1

N

C1

N
None None

s3
C2

N

C2

N None None

s4 H
C3

F N

C3

F N

C4

N

C4

N

C3

F

C3

F ą4

C4

N

C4

N

Given the submitted list, the final matching is produced by the end of that step:
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Step t “ 3

Student Final match

s1
C4

F

C4

F

s2
C1

N

C1

N

s3
C2

N

C2

N

s4
C3

F

C3

F

The example above highlights some of the main characteristics of the GIDAM mechanisms.

Students only have to submit a list when the absence of that information would not allow the

mechanism to determine where their next tentative allocation (if any) should be. Student s1,

for example, did not have to submit anything after the first step, despite the fact that her

tentative match was rejected after the second step. Contracts that are no longer feasible for a

student are not offered in their menus, reducing the number of options to consider. Students

are also free to choose the length of the list they submit, up to the limit established by the

maximum rank function π.

We can define a matching function µ that represents the outcome of the GIDAM mech-

anism, where for every c P C, µ pcq “ fc
`

AT
˚

pcq
˘

, and for every x P µ pcq, let µ ps pxqq “ x.

Whenever TMax “ 8 or there is a t ď TMax such that π ptq “ 8, we say that the GIDAM

is unbounded. When GIDAM is unbounded, therefore, a student is able to express, either

over time or via a ranking in some steps, a sequence of choices over as many contracts as she

wishes.

A random outcome is a probability distribution over the set of all outcomes X . An

outcome X 1 Ď X is stable if it is individually rational and there is no college c and set of

contracts X2 Ă X such that X2 ‰ fc pX
1q, X2 “ fc pX

1 YX2q and for every s P s pX2q,
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X2
sRsX

1
s. More specifically, we say that a student s and college c form a blocking pair

under X 1 if s has a contract in X2zX 1. A stable outcome is the student-optimal stable

allocation if every student weakly prefers it to any other stable outcome.

In order to guarantee that the outcomes and incentives of the GIDAM mechanisms sat-

isfy desirable properties, it is necessary to impose some restrictions on the colleges’ choice

functions. The first one comes from Hatfield and Kojima [2010]:

Definition 2. Contracts in X are unilateral substitutes for college c under fc if there

do not exist contracts x, z P X and a set of contracts Y Ď X such that s pzq R s pY q,

z R fc pY Y tzuq, and z P fc pY Y tx, zuq.

Another condition that we use comes from Aygün and Sönmez [2013]:

Definition 3. The choice function f satisfies irrelevance of rejected contracts (IRC) if

x R f pX 1 Y txuq implies f pX 1 Y txuq “ f pX 1q for all X 1 Ă X and x P XzX 1.

Finally, the last property that will be used was introduced in Hatfield and Milgrom [2005]:

Definition 4. The choice function f satisfies the law of aggregate demand if for all

Y Ď Z, |f pY q| ď |f pZq|.

Lemma 1. Assume that for every college c P C, fc satisfies IRC, and contracts in X are

unilateral substitutes. Then, for every student s and 0 ď t ď t1 ď T ˚, if the set of contracts

in the menu given to s in step t is non-empty, then all contracts in a menu given in step t1

are also in the menu given in step t.

Lemma 1 posits that once a contract becomes unavailable for a given student, that contract

will never become available again, regardless of the strategies used by the students. This

shows that one piece of information given by the mechanism after each step—the set of

acceptable contracts available to the student—constitutes reliable information about the

contracts that are not available anymore for a student, as opposed to the Brazilian and Inner



THE ITERATIVE DEFERRED ACCEPTANCE MECHANISM 28

Mongolia mechanisms. We define a formal generalization of the “straightforward behavior”

[Roth and Sotomayor, 1992] when interacting with the GIDAM mechanism:

Definition 5. A strategy of student s P S is straightforward with respect to P ˚ if for

every step t in which a non-empty menu ψt psq is offered by the mechanism, s submits a

ranking with the top k pψt psq , tq options in ψt psq, ordered as in P ˚, where k : 2X ˆ NÑ N

is a function such that, for every t, 1 ď k p¨, tq ď π ptq, and k p¨, t8q “
ˇ

ˇψt
8

psq
ˇ

ˇ, where t8 is

the highest value of t such that π ptq “ 8.

Therefore, a strategy is straightforward in the GIDAM when, in every step, the student

submits either her full preference over the contracts in the menu offered (whenever π ptq is

large enough) or some truncation of her true preference. Moreover, when there are multiple

steps in which a student can submit an unbounded ranking over contracts, she must rank

all the alternatives presented in a menu at some step in which that is allowed.24 When

π ptq “ 1 for all t, the definition of straightforward strategy reduces to one of straightforward

behavior in Roth and Sotomayor [1992]: every time the student is asked to make a choice,

she picks her most preferred alternative with respect to her true preference. When students

follow straightforward strategies, the outcome produced by the unbounded GIDAM is of a

well-known type:

Proposition 1. Assume that, for every college c P C, fc satisfies IRC and contracts are

unilateral substitutes. If all students’ strategies are straightforward with respect to PS, there

is a finite number of steps T ˚ after which the outcome of any unbounded GIDAM mechanism

is the student-optimal stable outcome with respect to PS.

The proof of Proposition 1 is based on the fact, shown in Hirata and Kasuya [2014], that the

cumulative offer process that takes place during the GIDAM mechanism is order independent

24Note that these include the null option H, and therefore contracts might be deemed unacceptable even
when the ranking submitted is supposed to include all options.
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and when students follow straightforward strategies the outcome is the student-optimal stable

outcome. As a result, all combinations of such strategies yield the same result.25

When colleges’ choice functions satisfy IRC, unilateral substitutes, and the law of aggregate

demand, a direct mechanism that produces the student-optimal stable outcome is strategy-

proof [Aygün and Sönmez, 2013, Hatfield and Kojima, 2010]. That is, submitting her true

preference ranking over contracts is a weakly dominant strategy for every student. One may

be tempted to conclude that this will imply that straightforward strategies, which are the

equivalent of truth-telling in this dynamic setting, are also dominant under the GIDAM

mechanism. However, the proposition below shows that not only is this not the case, but

that the students may not have any dominant strategy at all.

Proposition 2. A student may not have a weakly dominant strategy under the GIDAM

mechanism.

Not following a straightforward strategy may be profitable because, in contrast to the

direct mechanism, an agent may influence others’ actions by modifying the signals received

by them. So, for example, if a student has a strategy that depends in some way on the

signals produced by one’s actions, or even on the sequence of menus that are presented or

the timing of the rejection in a particular choice, that fact could be exploited. However,

we will show that the profile in which students follow straightforward strategies constitutes

a robust equilibrium. The equilibrium concept that we use is a refinement of the Perfect

Bayesian Equilibrium.

Definition 6. A strategy profile together with a belief system is an ordinal perfect

Bayesian equilibrium (OPBE) if, at every information set, every deviation from the

equilibrium strategy is stochastically dominated by following it.

25This might come as a surprise in light of Ergin [2000], who shows that consistency — a property that
is indirectly related to this order independence — would be incompatible with stable rules. One important
difference is that in GIDAM, in every step before the last, allocations are tentative. Therefore, different orders
in which the proposals are made do not restrict the allocations as in the cases considered in that paper.
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The definition above is intentionally informal, but its formal version can be found in the

Appendix. When a strategy profile is an OPBE, therefore, the probability of obtaining the

most preferred contract, the two most preferred contracts, the three most preferred contracts,

etc., is weakly greater when following the equilibrium strategy compared to any deviating

strategy when starting from any step. Equivalently, no deviating strategy yields a better

expected utility for any utility function that represents the students’ ordinal preferences.

For that, we consider the extensive-form game induced on the students by the GIDAM

mechanism. We allow students to have uncertainty regarding other students’ preferences and

exam grades. The sequence of events is as follows:

(1) Step t “ 0: Nature draws the values of X and P from a joint distribution ξ, and each

student s observes the realization of Xs and Ps.

(2) Steps 1 ď t ď TMax: students interact with the GIDAM mechanism. That is, in

each step t, every student s P S receives a menu of contracts and a maximum rank

value π ptq and has to submit a ranking over those contracts, as in the description of

the mechanisms above. At the end of the step, the public signals are observed by all

students. The mechanism terminates at some step T ˚ ď TMax.

(3) Step T ` 1: Students are matched to their outcomes produced by the GIDAM mech-

anism.

Our main result shows that, when facing this game, students following straightforward strate-

gies constitutes an OPBE.26

Theorem 1. Consider a maximum rank function π and an unbounded GIDAM mechanism

using it. Let ω be any belief system and σ˚ be a strategy profile in which all strategies are

straightforward with respect to PS. Then σ˚ together with ω is an OPBE of the game induced

by the GIDAM mechanism.
26Ehlers and Massó [2015] describe restrictive conditions under which strategy profiles in (static) direct
stable mechanisms constitute an OBNE (the direct mechanisms counterpart of OPBE) under incomplete
information. However, these conditions are not especially restrictive when we focus on the student-optimal
stable mechanisms, which is strategy-proof. Our result shows that, when considering this specific selection
over the set of stable matchings, that result extends to this sequential mechanism.
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The proof of Theorem 1 is fundamentally based on the fact that although the space of

deviating strategies is significantly large, they are all indistinguishable, from the perspective

of an observer, from a student following a straightforward strategy for some different prefer-

ence. This allows us to evaluate deviating strategies in all of their paths, which may include

multiple interactions that the student may have with the mechanism. Without this, it would

be difficult to determine the final outcome of a generally specified deviation.27

4.1. Iterative Deferred Acceptance. Here we introduce the Iterative Deferred Acceptance

Mechanism (IDAM), which is an application of the GIDAMmechanisms for college admissions

problems, like those tackled by the mechanisms described in section 2, where the criterion

used by colleges to select candidates may be summarized by cutoff grades. An exam-based

college matching market is a tuple xS,C, q, PS, z, Zy:

(1) A finite set of students S “ ts1, . . . , snu,

(2) A finite set of colleges C “ tc1, . . . , cmu,

(3) A capacity vector q “ pqc1 , . . . , qcmq,

(4) A list of strict student preferences PS “ pPs1 , . . . , Psnq over C Y tsu28,

(5) A list of vectors of exam scores z “ pz ps1q , . . . , z psnqq, where for each s P S,

z psq “ pzc1 psq , . . . , zcm psqq, are the exam scores that student s obtained, respectively,

at college c1 . . . , cm. We assume that for every s, s1 P S and c P C, zc psq “ zc ps
1q ùñ

s “ s1, and

(6) A list of minimum necessary scores Z “
`

zc1 , . . . , zcm
˘

.

The set of contracts, colleges’ choice functions and public signals are derived from the above

as follows:

‚ The set of valid contracts is X “ tps, c, zc psqq : s P S, c P C and zc psq ě zcu. That is,

the valid contracts are between all colleges and the students who have an exam grade

27In fact, in most sequential matching mechanisms in the literature (for example, Alcalde and Romero-Medina
[2005], Triossi [2009], and Romero-Medina and Triossi [2014]) the number of times an agent interacts with
the mechanism is either exogenously given or is one in equilibrium.
28Here s represents a student remaining unmatched to any college.
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at least as high as the minimum at that college. The contractual term is the exam

grade itself. Since there is only one contract between each student and each college,

we can refer to the menus of contracts as simply being menus of colleges. Moreover,

students’ preferences over contracts are directly derived from their preferences over

colleges.

‚ For a given set of contracts Y , colleges’ choice functions fc select the top qc contracts

in Yc with respect to zc if |Yc| ě qc, and all contracts in Yc otherwise.

‚ The public signals are the colleges’ cutoffs (the minimum required exam grade at that

college, given the current set of contracts being held).

Finally, we let TMax “ 8 and for all t, πptq “ 1. It is easy to see that fc, as defined

above, satisfies unilateral substitutes and the law of aggregate demand. This implies that

Proposition 1 and Theorem 1 also hold for the IDAM mechanism.

Corollary 1. If students follow straightforward strategies, the outcome of the IDAM mech-

anism is the student-optimal stable outcome.

Corollary 2. All students following straightforward strategies with respect to their true pref-

erences constitute an OPBE of the game induced by the IDAM mechanism.

Let ζtc be the value of the cutoff of college c made public in step t, as defined above. In

light of the definition of fc, Lemma 1 leads to the following conclusion:

Corollary 3. (Cutoff grades never go down) For every 0 ď t ď T ˚ and c P C, ζtc ě ζt´1c .

As described in subsection 3.1, manipulations via cutoffs consist of temporarily inflating

the cutoff value of a college and then reducing it. The corollary above implies, therefore, that

manipulation via cutoffs is not feasible:

Remark 5. The IDAM mechanism is not manipulable via cutoffs.

It is also worth noting that, while the process that takes place during the execution of the

IDAM mechanism resembles a “worker-proposing” version of the salary adjustment in Kelso
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and Crawford [1982], our results shows that, at least when students are the only strategic

agents, the process itself is an equilibrium when interactions are restricted in the way defined

by the IDAM mechanism.

5. Time feasibility

The number of steps that it takes for the GIDAM or IDAM mechanisms to produce the

Student-Optimal Stable Outcome when students follow straightforward strategies depends

on the interaction of multiple variables, such as students’ preferences, the maximum rank

function, the colleges’ choice functions (or students’ exam grades), etc. It is important,

however, to have some sense of how many steps that will take, and if there are other viable

alternatives to reduce the time necessary to produce the outcome.

First, we can make two intuitive remarks to provide a baseline for the expected range for

the steps these mechanisms may take. For simplicity, we restrict our attention to IDAM

mechanisms. Note that the IDAM mechanism takes the longest time among all GIDAM

mechanisms, as it allows to select only one college at a time.

Remark 6. For any set of students, colleges, capacities, vectors of exam scores, and minimum

necessary scores, there are preference profiles such that when students follow straightforward

strategies, the IDAM mechanism produces the student-optimal stable outcome after one step.

A preference profile that would lead to the observation above can be constructed as follows.

Take any preference profile PS and, given the set of students, colleges, capacities, vectors of

exam scores, and minimum necessary scores, produce a stable matching µ˚. Next, let the

preference profile P 1S be the same as PS except that for every student s who is matched to a

college under µ˚, move the position of µ˚psq to the top of the preference of student s. It is

easy to see that when P 1S is the real preference profile, the matching µ˚psq will be produced

after only one step of the IDAM mechanism.

Another straightforward case is when preferences are common between students.
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Remark 7. For any set of students, colleges, capacities, vectors of exam scores, and mini-

mum necessary scores, if all students have the same preference P ˚ over colleges and follow

straightforward strategies, then the IDAM mechanism produces the student-optimal stable

outcome after at most k steps, where k is the number of acceptable colleges under P ˚.

Finally, we provide an analogous result for the case in which there is a unique grade for

each student across all colleges. This is a common situation where, for example, students

are ranked based on their grades in a national exam. The result requires a more detailed

proof, since as opposed to the remarks above, the mechanics involved when students may

have arbitrary preferences are less straightforward.

Proposition 3. If grades are common across colleges and students follow straightforward

strategies, the maximum number of steps it takes for the unbounded IDAM mechanism to

produce the student-optimal stable outcome is m.

The choice of the parameters TMax and π have a great impact on the number of steps

needed for a GIDAM mechanism produces an outcome. In fact, if TMax “ 1 and πp1q “ 8,

the GIDAM mechanism reduces to the usual direct revelation version of the cumulative

offer mechanism [Hatfield and Kojima, 2008]. There are many other combinations of these

parameters that can be used and that may impact the number of steps, such as the one

below.

5.1. The free-form GIDAM. The GIDAM family of mechanisms provides a natural way

to reduce the number of periods until the Student-Optimal Stable Outcome is produced. It

consists of letting students submit rankings over some or all of the options given in their

menus at each step. That is equivalent to a GIDAM mechanism where TMax “ 8 and for

every t, πptq “ 8.

In terms of the number of steps, the worst case occurs when students who are given a menu

never submit a ranking with more than one option. When some students submit rankings,

it makes it possible for the information to be used to make “automatic” choices on these



THE ITERATIVE DEFERRED ACCEPTANCE MECHANISM 35

students’ behalf. The students who choose to submit rankings have the additional advantage

of reducing the likelihood that they will have further interactions with the clearinghouse.

5.2. The GIDAM+DA alternative. Another alternative that a policymaker could adopt

is to use a hybrid of the iterative mechanisms considered here and the traditional deferred

acceptance, which we denote by GIDAM+DA. It consists of running the GIDAM mechanism,

with students making only one choice at a time, for a fixed number of steps, and then asking

students to submit a ranking over the remaining options. Formally, for a given number of

steps k ą 0, the GIDAM+DA is simply defined as the GIDAM mechanism in which the

maximum rank function is such that for all t P t1, . . . , ku, π ptq “ 1, and π pt` 1q “ 8.

One of the main advantages of the GIDAM+DA is that it ends after a number of steps

set by the designer: k ` 1. Moreover, being an unbounded GIDAM, it implements the

student-optimal stable outcome in an OPBE of straightforward strategies.

The GIDAM+DA mechanism has some similarities to the German Mechanism: it consists

of a dynamic stage followed by a submission of rankings for a deferred acceptance algo-

rithm that terminates the matching. Unlike the German Mechanism, however, it provides

robust incentives for students to follow the simple straightforward strategy, in which a stable

matching is produced.

5.3. Simulations. In this section we present the outcome of several simulations. We com-

pare the number of steps it takes for the unbounded IDAM mechanism with one choice per

step to produce the student-optimal stable matching with the length of the rankings that

students need to submit so that, for the market in question, truth-telling is an equilibrium.29

This allows us to have both a quantitative idea of how these two variables relate (time in

IDAM vs. length of ranking in DA) and how they perform in each scenario. As we will show,

the answer for these questions is not as straightforward as one might think.

29The reason we use the constrained DA as a benchmark comparison is that, in effect, almost all centralized
clearinghouses use the constrained DA, despite recommendations against including exogenous bounds on the
number of choices, as well as experimental evidence against constrained lists Calsamiglia et al. [2010].
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The construction of the problems follows a method similar to that applied in Hafalir et al.

[2013]. Students’ ordinal preferences are derived from utilities that each student has over the

colleges. All colleges are deemed acceptable by all students.30 Student s P S’s utility from

being matched to college c P C is the following:

us pcq “ αΘc ` p1´ αqΘc
s

The interpretation of the parameters is as follows. The utility that a student s derives from

being matched to a college c is a combination of a value that is shared by all students (Θc)

and an idiosyncratic value that is unique to a student-college pair (Θc
s). The value of Θc could

therefore be the widespread understanding of the quality of the college and Θc
s incorporates,

for example, how the college’s characteristics fit the student’s particular objectives. For each

problem, and for each value of c P C and pc, sq P C ˆ S, Θc and Θc
s are independently drawn

from the normal distribution with mean zero and variance 1. The value of α, which represents

the correlation of preferences between students, is exogenously set in the range r0, 1s.

Students’ exam grades at each college follow a similar model, and the grade that student

s has at college c is:

zc psq “ βΘs ` p1´ βqΘs
c

Here once again, for each problem, the value of Θs and Θs
c is independently drawn from

the normal distribution with mean zero and variance 1. The minimum grade at all colleges is

zero (that is, all students are acceptable to all colleges). Moreover, β P r0, 1s is an exogenous

parameter that represents the degree of correlation between a student’s grades at colleges.

Notice that when β “ 1, students have the same exam grade at all colleges. This is the case,

30Note that if we allowed for colleges to be deemed unacceptable, since in the IDAM mechanism students
submit only one choice from a menu at a time, the number of steps would be weakly fewer than the ones we
obtained.
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for example, when the criterion used for ranking students is the grade on a single national

exam.

It is important to note that the values of us and zc are used in a purely ordinal manner, and

therefore the fact that their values might be negative has no relation with the acceptability

of the students and/or colleges. In each simulation, we set the values of the parameters

pn,m, q, α, βq (where q is the common capacity for all colleges) and generated 20 problems,

each representing independent draws for values of the random variables. Every combination

of the values of the parameters α and β in steps of 0.1 were used. In other words, every

pα, βq P r0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1s2 was simulated. In every simulation, the

number of colleges (m) was 100 and every college had a capacity of q “ 5. The number of

students was parametrized: n “ λqm, where λ is the market balance, that is, the number of

students per seat. Different values of λ allow us to see how the aggregate degree of competition

between students for seats affects the results. We used the values λ P t0.5, 1.0, 1.5u.31

Figure 5.1 shows two values for each combination of α and β and λ. In the upper graphs, we

show the rounded average number of steps that it took for the unbounded IDAM to produce

an outcome. That is, assuming that the time between each step of IDAM is set to be fixed,

it represents the total amount of time that it takes for it to end and produce the student-

optimal stable outcome. The lower graphs show the rounded average of the maximum of

how far in each student’s preferences the DA procedure had to go before producing the final

outcome. This value, therefore, is the shortest length of the DA ranking in that problem that

can guarantee that truth-telling is a Nash equilibrium that yields the student-optimal stable

outcome.

Some facts stand out. First, that the value of λ (the market balance) has a substantial

qualitative impact on the outcomes. When λ “ 0.5, both variables present a similar behavior:

they increase with α and do not change much with β. The fact that the number of steps in

IDAM (and similarly the maximum rank in DA) increases with the correlation of preferences

31In the Appendix we show the results for the case λ “ 5.0 as a robustness check.
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is natural: as preferences become more correlated, many students follow a similar order of

applications, with a small number of them being matched to their final allocation at each

step.

Some of the most noticeable results are observed when λ “ 1, that is, the number of

students equals the number of colleges. Since all colleges and students are mutually accept-

able, every student will be matched to a college and, therefore, the mechanisms will just

determine the specific match of each student. What we will see is that the performance of

IDAM and DA are almost complementary: IDAM performs better when DA is worse, and

vice versa. More specifically, when both preferences and grades have low correlation values,

IDAM performs especially badly, and DA performs the strongest. The reason for the bad

performance of IDAM is that these scenarios are more prone to so-called rejection chains,

in which one student applies to a college, which leads to the rejection of another student,

who then applies and is tentatively accepted by another college, leading to another rejection,

etc. Since grades are not very correlated, the fact that a student was rejected at one college

does not correlate with her being rejected at the her next-preferred college, which increases

the likelihood of those cycles. When preferences are more correlated, on the other hand, the

number of students applying to a college is higher, and that competition makes it less likely

that some student will later on displace one who was tentatively matched there. As a result,

when α is high, this problem is reduced.

The performance of DA, on the other hand, has a different nature. When the values of α

are low, there is less competition overall between the students for each college. As a result,

it is possible to satisfy students’ preferences to a great extent, matching most of them to

their most preferred colleges. When the value of β is high, though, some students have low

grades at all colleges, and will therefore end up matched to colleges with seats left empty by

other students’ choices. As a result, these students will be matched to colleges lower in their

preferences, and DA will also perform worse.
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Overall, therefore, when it comes to the trade-off between rank length and number of steps

when markets are balanced, IDAM and DA excel in complementary scenarios. When the

correlation of preferences and grades are low, the execution of IDAM is extended for many

additional steps due to a small number of students following rejection chains, whereas in the

other scenarios IDAM converges in relatively few steps, especially when grades are correlated.

When λ “ 1.5, however, we see that while DA performs almost just as bad in most

configurations, the effect that the rejection cycles have under low correlation of preferences

and grades is almost entirely eliminated by the increase in competition between students for

the seats.32 While this increase reduces the likelihood that a student who is rejected from a

college is accepted in the next one, it does not change the fact that some students will end

up matched to less desirable ones. For the intended application of large-scale national college

admissions that use national exams, IDAM therefore presents its highest relative advantage:

competition is high, grades are highly correlated, but preferences are less correlated, due to

field and geographic preferences.

32In the Appendix we show that when the ratio of students per seat is substantially higher, with λ “ 5.0, this
difference is even stronger, with IDAM using a smaller number of steps while DA still needs a full ranking to
be submitted.
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Figure 5.1. Number of steps in IDAM vs. maximum rank in DA

Roth and Xing [1997] present simulations of the medical residence matching process that

took place in the US for some time. In it, hospitals would sequentially call doctors, following

a preference ordering, and doctors accept, reject, or hold on to offers. The process describes

an asynchronous version of the college-proposing deferred acceptance. The authors used

computer simulations to evaluate the time it would take to end and produce the hospital-

optimal stable matching and considered combinations of uncorrelated and fully correlated

preferences. There are many reasons why their results cannot be directly compared with our

simulations, in particular the fact that the “menu” faced by the hospitals was not updated

with the set of doctors who would tentatively accept their offer, as we do in what would be an

analogous analysis in our setup. Still, two observations in their exercise have analogous results

in our simulations: the longest duration occurred when the proposing side had perfectly

correlated preferences and the receiving side had uncorrelated preferences, and the shortest
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time was observed when the proposing side had uncorrelated preferences and the receiving

side had perfectly correlated preferences.

6. Conclusion

In this paper we introduced the GIDAM, a family of iterative mechanisms in which partic-

ipants are sequentially asked to make choices or submit rankings over menus they are given,

and produce stable outcomes in a robust truthful equilibrium.

GIDAM mechanisms are flexible in that they allow for different combinations of number of

choices, rankings, and number of steps, but also share with current procedures the dynamic

and more transparent way in which the matchings are created.

The GIDAM mechanisms, and the special cases we introduced, improve upon the short-

comings that we identified in current college admissions mechanisms in Germany, Brazil, and

Inner Mongolia (China).

While under the German Mechanism accepting offers during the dynamic stage may lead

to wastefulness or justified envy (Remark 1), simply choosing the most preferred college at

those steps in any GIDAM is part of a robust equilibrium that results in a matching without

any justified envy or wastefulness. Moreover, unlike the German Mechanism, under the

GIDAM+DA mechanism students submitting truthful rankings after the dynamic steps is

also part of that equilibrium (Remark 2 and Theorem 1).

While the Brazilian and Mongolian mechanisms produce unreliable information about the

possibility of being accepted at different colleges through cutoff values (Remark 3), under

the IDAM mechanism students can safely ignore colleges that are not within reach at any

step (Corollary 3). Finally, unlike these two mechanisms (Remark 4), the IDAM mechanism

is not subject to manipulations via cutoff (Remark 5).

We believe that there are still many paths to explore on the subject of iterative stable

mechanisms. One of them is to use information that the policymaker may have about stu-

dents’ preferences, and optimize the mechanism accordingly. For example, if it is known that
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a large proportion of the students will have a certain college high in their preferences, the

“adaptive” IDAM mechanism could start with a higher initial value for the cutoff at that

college, and the stable matching would still be reached, in this case with a high probability.

Another related question involves the design of optimal menus that minimize the amount

of information requested from the students, based on the known grade distribution. When

grades are common, for example, the IDAM mechanism may obtain information on the pref-

erences that low-grade students have over “top” colleges, but if high-grade students are asked

for their preferences earlier, it would not be necessary for this information to be revealed.

Ideas similar to these are explored in Ashlagi et al. [2020].
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Appendix A. Appendix

A.1. Formal definitions.

A.1.1. The generalized iterative deferred acceptance mechanisms (GIDAM). For any I Ď X,

define Ac pIq ” tx P XzI : x P fc pI Y txuqu and As
c pIq ” Ac pIq X Is. We denote by As

c pIq

the set of available contracts for s at c under I. The interpretation of this is simple:

a contract is available for student s at c under I if college c would choose to accept that

contract while holding the set of contracts I.

Consider a college matching with contracts market xS,C, T,X, PS, FCy, a maximum num-

ber of steps TMax P N Y t8u, a maximum rank function π : Z` Ñ N Y t8u, a public

signal set Θ, and a public signal function ζ : 2X Ñ Θ. The generalized iterative

deferred acceptance mechanism (GIDAM) proceeds as follows:

‚ Step t “ 0: Let L0 “ S, S0 “ H, and for every c P C, A0 pcq “ H. Broadcast the

value of ζ pHq to the participants. 33

‚ Step 0 ă t ď TMax:

– (a) Let St ” ts P Lt´1|Ex P Xs, c P C : x P fc pA
t´1 pcqqu. There are two cases:

˚ If π ptq ‰ 8 or TMax “ 8, for every s P S, let the menu of contracts

presented to s be ψt psq ”
Ť

cPC As
c pA

t´1 pcqqYtHu if s P St and ψt psq “ H

otherwise.

˚ If π ptq “ 8 and TMax ă 8, for every s P S, let the menu of contracts

presented to s be ψt psq ”
Ť

cPC As
c pA

t´1 pcqq Y tHu.

– (b) There are two cases:

˚ If π ptq “ 8 and TMax ă 8, request that each student s P Lt´1 submit a

ranking of any size of elements in ψt psq.

˚ If π ptq ‰ 8 or TMax “ 8, request each student s P St to submit a ranking

with at most π ptq elements in ψt psq.

33Notation clarification: Lt is the set of students who are still active at the beginning of step t, and St is the
set of students who are active and do not have any contract held by a college at the beginning of that step.
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– (c) Let, for every student s1, P t
s1 be the ranking submitted. For every student s2

such that ψt ps2q “ H , let P t
s2 “ P t´1

s2 and, for all c P C, B0 pcq ” At´1 pcq. Start

with τ “ 0 and let Lt “ Lt´1.

˚ Substep τ ě 0: Some student s in Lt´1, who does not have a contract held

by any college, proposes her most preferred contract with respect to P t
s ,

which has not yet been rejected, x. If x “ H, remove s from Lt and from

further consideration. Otherwise, college c pxq holds x if x P Ac pB
τ q, and

rejects x if x R Ac pB
τ q. Let Bτ`1 pcq “ Bτ pcq Y txu and for all c1 ‰ c,

Bτ`1 pc1q “ Bτ pc1q.34

˚ Repeat the process above until no student is able to propose a new contract.

Let τ˚ be the last step in that process.

– (d) For each college c, let At pcq “ Bτ˚ pcq .

– (e) If for every c P C it is the case that At pcq “ At´1 pcq, stop the procedure.

– (f) Otherwise, broadcast the value of ζ p
Ť

cPC A
t pcqq, and proceed to the next

step.

‚ Denote by T ˚ the last step executed in the procedure. Let X˚ “
Ť

cPC fc
`

AT
˚

pcq
˘

.

X˚ is the outcome of the GIDAM procedure.

A.1.2. Extensive-form game formulations and equilibrium concept. Fix a set of colleges C

and their choice functions FC . The extensive game form G induced by a GIDAM mechanism

is a tuple pS,H,Φ, P, O, ξ, πq consisting of:

‚ A finite set of players S “ ts1, . . .u.

‚ A finite set of actions A “ ta1, . . .u.

‚ A list of preferences over random outcomes P “ pPs1 , . . .q.

‚ A maximum rank function π : NÑ NY t8u.

34Notice that a contract being in Bτ pcq does not imply that the contract is held by college c. It simply means
that it was offered to c at some step.
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‚ A set of finite histories H, which are a sequence of actions with the property that if

paiq
k
i“1 P H, then for all ` ă k, paiq

`
i“1 P H. The null history, hH is also in H.

‚ At history h0, nature draws the value of pX,P q from a joint distribution ξ, and each

student s observes the realization of X and of Ps. The distribution ξ is common

knowledge.

‚ Let Z be the set of terminal histories, that is, if h P Z where h “ paiq
k
i“1, then

there is no h1 P H, with h1 “ pa1iq
`
i“1 where ` ą k and for all i ď k, ai “ a1i. Then

paiq
k
i“1 P Z ùñ k mod n “ 0 .

‚ Φ is a player function. Φ : HzZ Ñ S.35 There exists an ordering of the players

ps1, . . . , snq such that, for all h P H such that |h| ď n, Φ phq “ s|h|.36

– Let paiq
k
i“1 P H, where k ě 1. If paiq

k`n
i“1 P H, then Φ

´

paiq
k
i“1

¯

“ Φ
´

paiq
k`n
i“1

¯

.37

‚ For each student s, Is is a partition of h : Φ phq “ s . Define ζ
´

paiq
k
i“1

¯

as the list of

public signals that result from the sequence of actions in paiq
k
i“1 and ψs

´

paiq
k
i“1

¯

as

the sequence of menus of contracts presented to student s after that same sequence of

actions. Define H t
` ”

!

paiq
k
i“1 P H : k mod n “ ` and k ˜ n “ t´ 1

)

, and let h, h1 P

H t
` . The histories h “ paiq

k
i“1 and h1 “ pa1iq

k
i“1 belong to the same member of the

partition Is` if and only if:

– |h| mod n “ |h1| mod n,

– ζ phq “ ζ ph1q,

– ψs` phq “ ψs` ph
1q,

– ai “ a1i for all i such that i mod n “ ` .38

‚ A phq are the actions available at h P H. For every hi P H t
` , the set of actions depend

on whether, given the history of actions until step t of the GIDAMmechanism, student

35For simplicity, we only allow one player per history. This is without any loss of generality.
36That is, the first n actions consist of player s1 playing first, s2 second, etc.
37Combined with the previous item and the condition on terminal histories, this implies that every player
plays every n actions once.
38That is, two histories belong to the same set of the partition if the student’s preferences are the same,
the history of menus faced by the student are the same, the sequence of public signals is the same, and the
actions taken by that player were also the same.
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s “ Φ phiq is offered a non-empty set of contracts, in which case A phiq is the set of

the ordered list of the contracts in ψt psq with at most π ptq elements, or not, in which

case we denote A phiq “ t♦u, where ♦ is simply a placeholder for an action when no

action is requested from the student. We abuse notation and denote, for any Ii P Is,

A pIiq to be A phiq for any hi P Ii (remember that by definition all histories in Ii have

the same set of actions associated with them).

‚ A strategy for player s is a function σs p¨q that assigns an action in A pIiq to each

information set Ii P Is.39

‚ The outcome function O assigns, to each strategy profile σ “ pσs1 , . . . , σsnq, a random

outcome that results from following the histories that result from following those

strategies in the GIDAM mechanism, given each realization of X and P .

Since our solution concept will demand that students’ strategies are rational at all possible

information sets, we will need to consider how students’ strategies act at each subgame. We

first define a subgame:

Definition 7. A subgame of the game G at non-terminal history h “ paiq
k
i“1, for h P HzZ

is a game [G|h “ pS|h , H|h , Φ|h , P |h , Oq]<G|h “ pS|h , H|h , Φ|h , P |h , π, Oq> (we may also

abuse notation and let G|Ii “ G|h when h P Ii) where:

‚ H|h “
!

h1 “ pa1iq
l
i“k where l ě k and pa1, . . . , ak´1, a1k, . . . , a1lq P H

)

‚ S|h “ ts P S : Φ ph1q “ s for some h1 P H|h zZu

‚ Φ|h : H|h Ñ S|h such that for all h1 P H|h, where h1 “ pa1iq
l
i“k, and Φ|h ph

1q “

Φ pa1, . . . , ak´1, a
1
k, . . . , a

1
lq

‚ For each s P S|h, Ps|h satisfies, for all h1, h2 P H|h :

h1 Ps|h h
2
ðñ pa1, . . . , ak´1, a

1
k, . . . , a

1
lqPs pa1, . . . , ak´1, a

2
k, . . . , a

2
l q

‚ The weak preference Rs|h is defined accordingly.

39We restrict our analysis to pure strategies.
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Finally, let σ|h “ pσs1 |h , . . . , σsn |hq be the strategy profile σ restricted to the subgame

G|h. We can define a subgame analogously in terms of an information set instead of a single

history. Let t8 be the highest value of t such that π ptq “ 8. We will consider situations in

which students present straightforward behavior. Therefore, we can define a straightforward

strategy accordingly:

Definition 8. A strategy σs of student s P S is straightforward with respect to P ˚ if

for every t and hts P H t
s, σs phts|z psq , P ˚q “ ♦ if A phtsq ‰ t♦u. Otherwise, σs phts|z psq , P ˚q

consists of the π˚ most preferred contracts in A phtsq, ordered according to P ˚, where π˚ ď

π ptq and π˚ “ |A phtsq| when t “ t8.

Let A and B be two random outcomes. We denote by Ís the first-order stochastic dom-

inance relation under Ps. That is, A Ís B if for all v P C Y tsu, Pr tA psq “ v1|v1Rsvu ě

Pr tB psq “ v1|v1Rsvu. A belief system ω is a collection of probability measures, one for

each information set. Moreover, denote by Oω pσqG the random outcome induced by the

strategy profile σ and belief system ω in game G.

Definition 9. A strategy profile σ together with a belief system ω is an ordinal perfect

Bayesian equilibrium (OPBE) of a game G if:

(i) For every Ii P Is and s P S|Ii , Oω pσs|h , σ´s|hqG|Ii
Ís Oω pσ

1
s|h , σ´s|hqG|Ii

(ii) Let Pr ph|σq be the probability that history h is reached, given σ. The belief

system satisfies the following property, for any information set Ii that is reached

with positive probability, and h P Ii: ω phq “ Prph|σq
ř

h1PIi
Prph1|σq

.

A.2. Proofs.

Lemma 1.

Proof. First, note that if ψt1 psq “ H, then the statement is true. Suppose, for the sake of

contradiction, that ψt1 psq ‰ H and the statement is false. Then, there is a student s P S,

0 ď t ď t1 ď T ˚ and a contract x˚ P X such that x˚ P ψt1 psq but x˚ R ψt psq. Since for any
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I 1 Ď X, Ac pIq Ď Ic, we can separate the violation of the lemma into the contracts available

for a student from a single college. There is, therefore, a college c such that:

x˚ P As
c

´

At
1

pcq
¯

but x˚ R As
c

`

At pcq
˘

By construction, for every c P C, At pcq Ď At
1

pcq. Therefore:

x˚ P As
c

´

At
1

pcq Y
”

At
1

pcq zAt pcq
ı¯

but x˚ R As
c

`

At pcq
˘

And given the definitions of As
c and Ac:

x˚ P fc

´

At pcq Y
”

At
1

pcq zAt pcq
ı

Y tx˚u
¯

but x˚ R fc
`

At pcq Y tx˚u
˘

We need to consider three cases: (i) x˚ R At
1

pcq Y At pcq, (ii) x˚ P At pcq, and (iii)

x˚ P At
1

pcq zAt pcq. Cases (i) and (ii): In both cases, x˚ R
“

At
1

pcq zAt pcq
‰

. Since fc sat-

isfies IRC, fc
`

At pcq Y
“

At
1

pcq zAt pcq
‰

Y tx˚u
˘

“ fc pA
t pcq Y tx˚uq. But this contradicts

x˚ R fc pA
t pcq Y tx˚uq. Case (iii): Here we will use the following claim, which can easily

be derived from the definition of unilateral substitutes:

If contracts are unilateral substitutes for college c under fc, there does not exist contract

z P Xs and sets of contracts Y Ď XzXs and I Ď XzXs such that z R fc pY Y tzuq and

z P fc pY Y I Y tzuq.

Denote by I˚ “
“

At
1

pcq zAt pcq
‰

z tx˚u. Then:

x˚ P fc
`

At pcq Y I˚ Y tx˚u
˘

but x˚ R fc
`

At pcq Y tx˚u
˘

By IRC and the fact that fc chooses only one contract per student:

x˚ P fc
`“

At pcq zXs

‰

Y rI˚zXss Y tx
˚
u
˘

but x˚ R fc
`

At pcq zXs Y tx
˚
u
˘

Following the claim above, this contradicts the assumption that fc satisfies unilateral

substitutes, finishing the proof. �



THE ITERATIVE DEFERRED ACCEPTANCE MECHANISM 54

Proposition 1.

Proof. First, note that given the description of an unbounded GIDAM mechanism and

Lemma 1, every time a student is asked to submit a ranking, the set of contracts avail-

able under a GIDAM mechanism is weakly smaller. Moreover, for any t, t1 and s P S such

that 0 ď t ă t1 ď T ˚, ψt psq ‰ H and ψt
1

psq ‰ H, it must be that the set of contracts

in ψt1 psq is a strict subset of ψt psq, since at least the highest-ranked contract submitted by

student s in step t must have been rejected by step t1. Therefore, in every step the set ψt psq is

strictly smaller for at least one student. Since X is finite, GIDAM will end and will produce

an outcome after a finite number of steps.

Next, notice that regardless of which straightforward strategy students use, in all of them

students will offer contracts following the order of their preferences, perhaps only skipping

those that would not be held by the college associated with the contract, and that the

outcome will be produced when every student either chooses H, has a contract held by a

college, or reaches the end of the last ranking submitted. According to Hirata and Kasuya

[2014], if the choice functions (cumulative offer) process will produce the student-optimal

stable matching regardless of the order in which doctors are called to offer contracts, as

long as the order in which each student offers her contracts follow their preferences over

them. Different straightforward strategies may imply different orders in which students offer

contracts, but this does not change the fact that students follow their own preference until

the end.40 Therefore, for any profile of straightforward strategies, the outcome of the GIDAM

mechanism will always be the student-optimal stable matching. �

Proposition 2.

Proof. For this proof we consider an exam-based college matching market and an IDAM

mechanism with π ptq “ 1 for all t. Consider the set of students S “ ts1, s2, s3u and of

40Technically speaking, under the cumulative order process students will always offer contracts following their
preferences, even those that would not be accepted by the college in the contract. Since choice functions
satisfy IRC, however, this is equivalent to a process that simply skips those contracts that would not be
accepted (and are, therefore, not part of the menus offered to the students under the GIDAM mechanism).
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colleges C “ tc1, c2, c3u, each with capacity qi “ 1. Student s1—who will be the player to

whom we will show having no dominant strategy—has preferences c1Ps1c2Ps1c3, and students’

exam grades at those colleges are as follows:

c1 c2 c3

s1 100 100 100

s2 200 200 200

s3 300 300 300

Suppose now that, conditional on the realized preferences and grades of student s1, student

s3 follows a straightforward strategy with respect to the preference c3P 3c2P
3c1. Notice that

we are not stating that those are the preferences of student s3, we are simply assuming

that she will follow the straightforward strategy with respect to P 3. Next, we consider two

strategies for student s2 and show that no strategy for s1 is a common best response for these

two possibilities.

Scenario 1

Suppose that student s2’s strategy is as follows: in t “ 1, choose c3. If at some later point

s2 is asked again to make a choice, she will choose the college with the highest cutoff value

at that step among the options available. In the event of a tie, she will choose the college

with the lowest index number (for example, the index number of c2 is 2). We will show that,

given s2 and s3’s strategies, the best response for s1 involves first choosing c2. The sequence

of steps will be as follows:

Step 1: Student s1 applies to c2. Students s2 and s3 apply to c3. Student s2 is rejected.

Cutoffs
`

ζ1c1 , ζ
1
c2
, ζ1c3

˘

are p0, 100, 300q.

Step 2: Since ζ1c2 is the highest cutoff among the colleges offered to s2, student s2 applies

to c2. Student s1 is rejected. Cutoffs
`

ζ2c1 , ζ
2
c2
, ζ2c3

˘

are p0, 200, 300q.

Step 3: Student s1 is left with two options: choose c1 or s. If she chooses s, she will remain

unmatched. If she applies to c1, she will be accepted. Final cutoffs
`

ζ3c1 , ζ
3
c2
, ζ3c3

˘

would then

be p100, 200, 300q and the outcome would be the matching µ1 as follows:
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µ “

¨

˝

c1 c2 c3

s1 s2 s3

˛

‚

Student s1 can therefore be matched to her most preferred college by first choosing c2.

Next, we show that by choosing first c1 or c3, s1 will always be matched to a strictly inferior

college. First, let her initially choose c1:

Step 1: Student s1 applies to c1. Students s2 and s3 apply to c3. Student s2 is rejected.

Cutoffs
`

ζ1c1 , ζ
1
c2
, ζ1c3

˘

are p100, 0, 300q.

Step 2: Since ζ1c1 is the highest cutoff among the colleges offered to s2, student s2 applies

to c1. Student s1 is rejected. Cutoffs
`

ζ2c1 , ζ
2
c2
, ζ2c3

˘

are p200, 0, 300q.

Step 3: Student s1 is left with two options: choose c2 or s. If she chooses s she will remain

unmatched. If she applies to c2, she will be accepted. Final cutoffs
`

ζ3c1 , ζ
3
c2
, ζ3c3

˘

would then

be p200, 100, 300q and the outcome would be the matching µ1 as follows:

µ1 “

¨

˝

c1 c2 c3

s2 s1 s3

˛

‚

If s1 chooses c3 first instead, the following will happen:

Step 1: Students s1, s2, and s3 apply to c3. Students s1 and s2 are rejected. Cutoffs
`

ζ1c1 , ζ
1
c2
, ζ1c3

˘

are p0, 0, 300q.

Step 2: Following her strategy and the fact that college c1’s index is lower than c2, student

s2 applies to c1. Student s1 has three options: also choose c1 and therefore be rejected and

left to choose between c2 and s in step t “ 2, choose c2, or choose s. In all cases she will

either end up remaining unmatched or matched to c2.

Scenario 2

Now suppose that student s2 follows a similar strategy to scenario 1, but where instead of

applying to c3 and then to the college with the highest cutoff value, she applies to the college
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with the lowest cutoff value, once again breaking ties based on the index of the college.41

Following an exercise similar to the one above, it is easy to see that student s1’s strategies

that involve choosing c2 or c3 first will lead to her either being unmatched or matched to c2,

while choosing c1 will match her to c1, her most preferred college.

Since every best response strategy under scenario 1 is dominated by different strategies

in scenario 2, we have shown that a student may not have a weakly dominant strategy

for the game induced by the IDAM mechanism, and as a consequence also the GIDAM

mechanisms. �

Theorem 1.

Proof. We use the extensive game notation introduced in Appendix A.1. Consider some

history h P H. Given other players’ strategies σ´s, the history that results from the strategy

profile pσs, σ´sq consists of a series of steps in which each student has either only the action

♦ or some menu of options ψt psq and a maximum rank π ptq, as described in the definition

of the GIDAM. Therefore, given our strategy profile and student s, we can write down a list

of pairs, with menus given to student s and her submitted ranking.

Suppose that the sequence of menus offered and actions chosen for a student s up to history

h are as follows:

``

ψ1, a1
˘

,
`

ψ2, a2
˘

, . . . ,
`

ψt, at
˘˘

For simplicity and without any loss of generality, assume that the sequence above has

removed from it the list of pairs pH,♦q. We show below that menus given to students never

include contracts present in any previously submitted ranking.

41Although the strategies used in this proof for student s2 may seem very arbitrary, they can be rationalized
by two simple stories. Student s2’s strategy in scenario 1 is consistent with a student who knows that her
top choice is c3 but has some uncertainty about whether c1 or c2 is her second choice, and sees the cutoff
grade as an indication of how competitive acceptance is at those colleges and therefore sees the perceived
quality of those. The strategy in scenario 2 could be rationalized by a student who once again knows that
her top choice is c3 but who would otherwise prefer to go to a college with low-achieving peers, and uses the
low cutoff as an indication of that fact.
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Claim. If contract x is in at, then for every t1 such that t1 ą t, x R ψt1 psq.

Proof. Let c “ c pxq. If ψt1 psq “ t♦u, the claim obviously holds. Therefore, we consider the

case in which both ψt psq and ψt1 psq have a positive number of contracts available. Since x is

in at, x P ψt psq. Also, since x P at and the fact that ψt1 psq ‰ t♦u, it must be the case that

all the contracts in at are in At1´1 pcq (otherwise the GIDAM mechanism would still use the

ranking at in step t1). Also, by the definition of the GIDAM, Ey P Xs, c P C : y P fc
`

At
1´1 pcq

˘

,

and in particular x R fc
`

At
1´1 pcq

˘

. Therefore, x R ψt1 psq. �

Therefore, there is no repetition of contracts in ai, i “ 1, . . . , t. We will abuse notation and

use ai to represent the student’s choice both as a ranking and as a set of contracts. Denote

ψi´ ” ψiz
Ťt
j“i a

j and X`
s ” Xsz tHu. We will show that this sequence could have been

generated by a student’s straightforward strategy with a preference relation in the following

class of preferences:42

X`
s zψ

1 R˚s a
1 P ˚s ψ

1
´zψ

2
´ R

˚
s a

2 P ˚s ψ
2
´zψ

3
´ R

˚
s ¨ ¨ ¨R

˚
s a

t P ˚s ψ
t
´

The notation above includes a class of strict preferences because some of its elements

(X`
s zψ

1, ψ1
´zψ

2
´, etc.) consist of (possibly empty) sets of contracts. Any strict preference

derived from some ordering over the elements of each of those sets belongs to the class of

preferences that we are referring to. We will use P ˚s to refer to some arbitrary element of

those preferences. The claim below implies that each preference in that class is complete over

the set of contracts and that no contract appears more than once.

Claim. ψt´ Ď ψt´1´ Ď ¨ ¨ ¨ Ď ψ1
´ Ď Xs , and ai X ψj´ “ H for all i, j.

Proof. First, note that ψ1
´ “ ψ1z

Ťt
j“1 a

j. Since by definition ψ1 is nonempty, a1 Ď ψ1, and

since by definition ψ1 Ď Xs, it follows that ψ1
´ Ĺ Xs. By the definition of ψt and Lemma 1,

ψk Ĺ ψk´1. Therefore:
42Note that this class of preferences does not necessarily include all the preferences that are compatible with
the choices made.
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ψk´1z
t
ď

j“k´1

aj “
``

ψk´1zψk
˘

Y ψk
˘

z

˜

ak´1 Y
t
ď

j“k

aj

¸

Consider now any k ą 1. By definition, all contracts in ak´1 are in ψk´1, and by the first

claim in this proof, no contract in ak´1 is in ψk. Therefore:

ψk´1´ “ ψk´1z
t
ď

j“k´1

aj “
```

ψk´1zψk
˘

zak´1
˘

Y ψk
˘

z

t
ď

j“k

aj “ ψk´ Y
``

ψk´1zψk
˘

zak´1
˘

That is, ψk´1´ “ ψk´Y
``

ψk´1zψk
˘

zak´1
˘

, which implies that ψk´ Ď ψk´1´ . Finally, for every

j ě i, it follows from the definition of ψi´ that aj X ψi´ “ H. Suppose instead that there

is a i ą j such that aj X ψi´ “ I, for some nonempty set of contracts I. In that case, the

definition of ψi´ implies that I Ď ψi. But in that case, we have that the contracts in I were

submitted in a ranking by the student in step j and were available in the menu in step j ą i,

which contradicts the first claim in the proof.

Next, take some of the menus that were offered, ψi. We now show that for all a P ψi where

a R ai, aiP ˚s a. For this, it suffices to show that:

a P
t
ď

j“i`1

aj Y
t´1
ď

j“i

ψj´zψ
j`1
´ Y ψt´

That is, we will show that a must be at some element to the right of those in ai in the

definition of P ˚s . Since a R ai, this is equivalent to:

a P
t
ď

j“i

aj Y
t´1
ď

j“i

ψj´zψ
j`1
´ Y ψt´

Since we defined ψi´ ” ψiz
Ťt
j“i a

j, we can rewrite the condition as:

a P ψizψi´
loomoon

piq

Y

t´1
ď

j“i

ψj´zψ
j`1
´

looooomooooon

piiq

Y ψt´
loomoon

piiiq
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Suppose not. Then a cannot be in piq, piiq, or piiiq. By piq, it must be that a R ψizψi´.

Since a P ψi, that implies a P ψi´. By piiq, since a R ψi´zψ
i`1
´ , it must then be that a P ψi`1´ .

This reasoning can be repeated until finding that it must be that a P ψt´. But this is piiiq,

which leads to a contradiction. �

The sequence ppψ1, a1q , pψ2, a2q , . . . , pψt, atqq is consistent with student s having a pref-

erence over contracts P ˚s and following a straightforward strategy that in each step k ď t

submits a ranking with the top
ˇ

ˇak
ˇ

ˇ contracts among those available, with respect to her

preference.

This implies that, since all other students follow straightforward strategies, every devi-

ating strategy for student s is outcome-equivalent to following a straightforward strategy

for some preference over contracts that is not necessarily that student’s real preference Ps.

Proposition 1, therefore, shows that the outcome produced will be the student-optimal stable

matching with respect to the preference profile pP ˚s , P´sq. Theorem 7 in Hatfield and Kojima

[2010] shows that since colleges’ choice functions satisfy unilateral substitutes and the law of

aggregate demand, submitting a true ranking is always a best-response when using a direct

mechanism. In light of the above result, when other students follow straightforward strate-

gies, any deviating strategy for s is outcome-equivalent to a deviating strategy in the direct

mechanism, and as a result is not profitable. Therefore, for every belief system, given that

other players’ strategies σ´s are straightforward, following any straightforward strategy is a

best-response for student s.

We have two more steps to follow. The first one shows that, for any system of belief ω,

deviating strategies are stochastically dominated by straightforward ones under this equi-

librium. Since we focus on pure strategies, the only source of uncertainty is the draw of P

and X that takes place in history h0. The fact that a truthful ranking is always a best-

response in the direct mechanism that yields the student-optimal stable matching implies

that, regardless of other students’ preferences (and the set of contracts X), the outcome

that a student obtains by using the true preference is always weakly better than any other
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strategy. In particular, this implies that following any straightforward strategy will yield her

most preferred contract whenever there exists a strategy that yields that while the realization

of other students’ preferences makes it possible. Also, due to the strategy-proofness in the

direct mechanism, straightforward strategies will always match a student with the second

most preferred contract whenever X and other students’ preferences are such that the first is

not possible and the second is for some strategies. This can be done for every contract in the

student’s preference, and proves that any straightforward strategy stochastically dominates

any deviating strategy.

Finally, we consider the fact that the definition of OPBE implies that deviating strategies

are stochastically dominated by straightforward strategies starting from any information set.

Obviously, any deviation that is outcome-relevant effectively starts from an information set

in which a student receives a nonempty menu. Let t be the first step in which student s is

given a nonempty menu while using a deviating strategy.

Consider now the extensive-form game that is induced by the GIDAM mechanism in which

all contracts that were rejected at some step before t are removed from X. Let us call this X̄.

In the first step of that game, all students apply to their most preferred contract in X̄. By

Hirata and Kasuya [2014], this is equivalent to, first, all students who had a contract being

held by a college in time t applying first, and then letting the students who are offered a

menu at time t to apply afterwards. By definition of X̄ and the fact that students preferences

are used from the top to the bottom, the contracts being held by colleges in period t are the

most preferred contracts in X̄ by those students. By IRC, all of the contracts offered by the

students who had contracts held in step t will have those contracts accepted. Therefore, when

the students who were given menus in step t make their applications, the set of contracts

being held by colleges is the same as those being held in the original game, at step t.

Therefore, we have that starting from any history in which a student is given a menu

to choose from, the continuation game is equivalent to a game induced by the GIDAM

mechanism, where the set of contracts is X̄. Given that other players follow straightforward
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strategies starting at that history, this implies that any deviating strategy is stochastically

dominated by following straightforward strategies. �

Proposition 3.

Proof. We will show that at each step of the IDAM mechanism, at least one college will have

its final matching determined. In order to make the result stronger, we will assume that all

colleges are acceptable to all students.43 Let zC denote the common exam score used by all

colleges.

Claim: For every period t and t ` 1 in which there are students who were rejected, the

highest grade among those students who were rejected at t is higher than the highest grade

among those students who were rejected at t` 1.

Proof : Suppose not. Then there is a student s who is rejected at period t ` 1 such that

zCpsq ą zCps
1q for any student who was rejected at period t. Clearly, s could not have been

rejected at period t. Let c be the college s is tentatively matched to by the end of period t.

In order for s to be rejected from c, there must be at least one student with a grade higher

than zCpsq who applied to c in period t ` 1. But that contradicts the assumption that all

students rejected at t have grades below zCpsq.˝

Now, consider the period t “ 1. There are two cases, one where at the end of the first step

the cutoffs for all colleges are either zero or the minimum necessary score.44 In this case, no

student was rejected, and therefore the IDAM mechanism ends, matching all students to their

choices. Otherwise, let ζ1˚ be the highest cutoff value of a college at the end of the period

t “ 1, and denote that college by c1˚. Clearly, under the definition of cutoff values, no student

who had their choice in t “ 1 rejected has an exam grade higher than ζ1˚. Moreover, under

the claim above, in any period that follows, no student who is rejected has a grade higher

than ζ1˚. Therefore, no student will have c1˚ in their menus after period t “ 1. Therefore,

c1˚, and potentially other colleges, are matched to their final matches.
43If some students deem some colleges unacceptable, this obviously cannot increase the number of steps the
IDAM mechanism takes before producing the final outcome.
44This would typically only occur when the number of seats at all colleges exceeded the number of students.
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For every period t ą 1, the same reasoning follows. If no cutoff has changed, then the

final allocation was reached. Otherwise, among the colleges that did not reach their final

allocation, let ζt˚ be the highest cutoff value, associated with college ct˚. Following the same

argument above, no student who is rejected after period t has a grade higher than ζt˚, and

therefore ct˚ will not be in a student’s menu after t. Therefore, ct˚, and potentially other

colleges, are matched to their final matches.

Since at every step at least one college is matched to their final matches (and does not

appear in any menu), and since there are m colleges, the maximum number of steps it takes

for the unbounded IDAM to produce the student-optimal stable outcome is m. �

A.3. Additional simulation data.
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Figure A.1. Number of steps in IDAM vs. maximum rank in DA
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A.3.1. Number of steps in IDAM vs. maximum rank in DA when market balance is 5.0.
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